
A -A26 0 064 ION PAGE Foni App00v08

',wwlN nit@ or "n o#W upe 01 6hb coftcton ol Wt•omo ,o hdudln sunsi~oneo for re" ouilsW~nO h tu to WaWonionwe W101 1s Higway, Sue 1204. Arboon, VA 22 -432. and to On Office of kdotni on n and r asd ~ ory Afbtu,. Oi W

1. AGENCY USE ONLY (Leave Blank) E 3. REPORT TYPE AND DATES COVERED

I I Final: 04 Nov 92
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Tartan Inc., Tartan Ada VMS/C40 v4.2.1, DEC
VAXstation 4000NMS (Host) to Texas Instruments TMS320C40 (Target),
92103011.11296
6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 IABG-VSR 113
Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E114
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Tartan Inc., Tartan Ada VMS/C40 v4.2.1, DEC VAXstation 4000NMS (Host) to Texas Instruments TMS320C40 (Target),
ACVC 1.11.

JAN27 99

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16. PRICE CODE_"'
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO.

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescilbed by ANSI Sid. 239-128

AVF Control Number: IABG-VSR 113November 04, 1992

Ada COMPILER
VALIDATION SUMMMRY REPORT:

Certificate Number: 92103011.11296
Tartan Inc.

Tartan Ada VNS/C40 v4.2.1
DEC VAistation 4000/VMS Host

Texas Instruments TS320C40 Target
(bare machine)

93-01433
i211'10111l

Prepared By:
IABG mbH, Abt. ITE

Einsteinstr. 20
W-8012 Ottobrunn

Germany

98 1 26 059

Certificate Information

The following Ada implementation was tested and determined to pass ACVC 1.11.
Testing was completed on October 30, 1992.

Compiler Name and Version: Tartan Ada VMS/C40 v4.2.1

Host Computer System:Digital VAXstation 4000 Model 60
under VAX/VMS version 5.5

Target Computer System: Texas Instruments TMS320C40
Parallel Processing Development System
(bare machine)

See section 3.1 for any additional information about the testing environment.

As a result of this validation effort, Validation Certificate 92103011.11296 is
awarded to Tartan Inc. This certificate expires 24 months after ANSI approval
of ANSI/MIL-STD-1815B.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
D-8012 Ottobrunn
Germany

A Aa a ao Oganization

Dirct omputer and Software Engineering Division
Inst tut or Defense Analyses
Alexandria VA 22311 DICrQALA¥fC D8

soo~lon Pop

Af joint Program Office IS BEAU
Dr. John Solomond, Director DTIC TAB 0
Department of Defense Unlaanoeno.4
Washington DC 20301 Jast -f laat ionu...

Diftr~but tm/

ve"llabli3ty CodeS

UtIS.le l

UNCLASSIFIED

Appendix A.

Declaration of Conformance

Customler. Tartan, Inc.

Certificate Awardee. Tarta, Inc.

Ads Validation Facility:. IABG mbH

ACVC Version: i.ii

Ads Implementation:

Ada Compiler Name and Version: Tartan Ada VMS/C40 v4.2.1
Digital VAXstation 4000 Model 60

Host Computer System: under VAX/VMS version 5.5
Texas Instruments TMS320C40

Target Computer System: Parallel Processing Development System
(bare machine)

Declaration:

I, the undersigned, declare that I have no knowledge of deliberate deviations from the

Afa Language Standard ANSl/MIL-STD-1815A, ISO 8652-1987, FIPS 119 as tested in

this validation and documented in the Validation Summary Report.

Lee B. Ehrlichinan Date
Tartan, Inc.
President and Chief Executive Officer

(Same) (Same)
Certificate Awardee Signature Date

Note: If the Customer and the Certificate Awardee are the same, only the customer

sipgature Is needed.

A-1

UNCUSSFIED

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES-.. 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-1
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro92] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro92]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro92] Ada Compiler Validation Procedures, Version 3.1, Ada Joint
Program Office, August 1992.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described
in the preceding paragraph, removing withdrawn tests (see section 2.1) and,
possibly some inapplicable tests (see Section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler ThI means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary

(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are t-ansformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial
or complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro92].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is August 02, 1991.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B8S001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD102B BDlBO6A ADIB08A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2BI5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD40S1D CD5111A CD7004C ED70OSD
CD700SE AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD900SB CDA201E
CE2107I CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant for
a given Ada implementation. Reasons for a test's inapplicability may be
supported by documents issued by the ISO and the AJPO known as Ada Coentaries
and commonly referenced in the format AI-ddddd. For this implementation, the
following tests were determined to be inapplicable for the reasons indicated;
references to Ada Commentaries are included as appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 285 tests have floating-point type declarations requiring more
digits than SYSTEM.MAX DIGITS:

C24113F..Y (20 tests) C35705F..Y (20 tests)
C35706F..Y (20 tests) C35707F..Y (20 tests)
C35708F..Y (20 tests) C35802F..Z (21 tests)
C45241F..Y (20 tests) C45321F..Y (20 tests)
C45421F..Y (20 tests) C45521F..Z (21 tests)
C45524F..Z (21 tests) C45621F..Z (21 tests)
C45641F..Y (20 tests) C46012F..Z (21 tests)

The following 21 tests check for the predefined type SHORTINTEGER; for this
implementation, there is no such type:

C35404B B36105C C45231B C45304B C45411B
C45412B C45502B C45503B C45504B C45504E
C45611B C45613B C45614B C45631B C45632B
B52004E C55BO7B B55BO9D B86001V C86006D
CD7101E

The following 20 tests check for the predefined type LONGINTEGER; for this
implementation, there is no such type:

C35404C C45231C C45304C C45411C C45412C
C45502C C45503C C45504C C45504F C45611C
C45613C C45614C C45631C C45632C B52004D
C550B7A B55B09C 886001W C86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined integer
type with a name other than INTEGER, LONG INTEGER, or SHORT INTEGER; for this
implementation, there is no such type.

C35713B, C45423B, B86901T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a name
other than FLOAT, LONG-FLOAT, or SHORT-FLOAT; for this implementation, there is
no such type.

A35801 checks that FLOAT'FIRST..FLOAT'LAST may be ,sed as a range constraint
in a floating-point type declaration; for this implementation, that range
exceeds the range of safe numbers of the largest predefined floating-point type
and must be rejected. (See section 2.3.)

C45531M..P and C45532M..P (8 tests) check fixed-point operations for types that
require a SYSTEM.MAX MANTISSA of 47 or greater; for this implementation,
MAX MANTISSA is less-than 47.

C45536A, C46013B, C46031B, C46033B, and C460348 contain length clauses that
specify values for 'SMALL that are not powers of two or ten; this
implementation does not support such values for 'SMALL.

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE OVERFLOWS is FALSE for floating point types and the results of various
floating-point operations lie outside the range of the base type; for this
implementation, MACHINE OVERFLOWS is TRUE.

D64005G uses 17 levels of recursive procedure calls nesting; *this level of
nesting for procedure calls exceeds the capacity of the compiler.

886001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009A, CA2009C..D (2 tests), CA2009F, and BC3009C check whether a generic
unit can be instantiated before its body (and any of its subunits) is compiled;

2-2

IMPLEMENTATION DEPENDENCIES

this implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit bodies
makes the instantiating units obsolete. (See section 2.3.)

CD1O09C checks whether a length clause can specify a non-default size for a
floating-point type; this implementation does not support such sizes.

CD2A53A checks operations of a fixed-point type for which a length clause
specifies a power-of-ten TYPE'SMALL; this implementation does not support
decimal 'SMALLs. (See section 2.3.)

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses to
specify non-default sizes for access types; this implementation does not
support such sizes.

CD28158 checks that STORAGE ERROR is raised when the storage size specified for
a collection is too small to hold a single value of the designated type; this
implementation allocates more space than was specified by the length clause, as
allowed by AI-00558.

The following 264 tests check operations on sequential, text, and direct access
files; this implementation does not support external files:

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE2405B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..8 (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103A CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..8 (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305A CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405A EE3405B
CE3405C..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE341OF CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CE3414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..8 (2) CE3704A..F (6) CE3704M..O (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (1) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A expect that NAME ERROR is raised when an attempt
is made to create a file with an illegal name; this implementation does not
support the creation of external files and so raises USEERROR. (See section
2.3.)

2-3

IMPLEMENTATION DEPENDENCIES

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 102 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

B22003A B24007A B24009A B25002B 832201A B33204A
B33205A B35701A B36171A B36201A B37101A B37102A
B37201A B37202A B37203A B37302A B38003A B38003B
B38008A B38008B B38009A B38009B B38103A 838103B
B38103C B38103D 838103E B43202C B44002A B48002A
B48002B B48002D B48002E B48002G B48003E B49003A
B49005A B49006A B49006B B49007A B49007B B49009A
B4AO10C 354A20A B54A25A B58002A B58002B B59001A
BS9001C B59001I B62006C B67001A B67001B B67001C
B67001D B74103E B74104A B74307B B83EO1A B85007C
B85008G B85008H 891004A B91005A B95003A 895007B
B95031A B95074E BA1001A BC1002A BC1109A BC1109C
BC1206A BC2001E BC3005B BC3009C BD2AO6A BD2BO3A
BD2DO3A BD4003A BD4006A BD8003A

E28002B was graded passed by Evaluation and Test Modification as directed by
the AVO. This test checks that pragmas may have unresolvable arguments, and it
includes a check that pragma LIST has the required effect; but for this
implementation, pragma LIST has no effect if the compilation results in errors
or warnings, which is the case when the test is processed without modification.
This test was also processed with the pragmas at lines 46, 58, 70 and 71
commented out so that pragma LIST had effect.

A35801E was graded inapplicable by Evaluation Modification as directed by the
AVO. The compiler rejects the use of the range FLOAT'FIRST..FLOAT'LAST as the
range constraint of a floating-point type declaration because the bounds lie
outside of the range of safe numbers (cf. LRM 3.5.7:12).

C83030C and C86007A were graded passed by Test Modification as directed by the
AVO. These tests were modified by inserting "PRAGMA ELABORATE (REPORT);" before
the package declarations at lines 13 and 11, respectively. Without the pragma,
the packages may be elaborated prior to package Report's body, and thus the
packages' calls to function REPORT.IDENT INT at lines 14 and 13, respectively,
will raise PROGRAMERROR.

B83E01B was graded passed by Evaluation Modification as directed by the AVO.
This test checks that a generic subprogram's formal parameter names (i.e. both
generic and subprogram formal parameter names) must be distinct; the duplicated
names within the generic declarations are marked as errors, whereas their
recurrences in the subprogram bodies are marked as "optional" errors--except
for the case at line 122, which is marked as an error. This implementation does
not additionally flag the errors in the bodies and thus the expected error at
line 122 is not flagged. The AVO ruled that the implementation's behavior was
acceptable and that the test need not be split (such a split would simply
duplicate the case in B83EOlA at line 15).

CA2009A, CA2009C..D (2 tests), CA2009F and BC3009C were graded inapplicable by
Evaluation Modification as directed by the AVO. These tests contain
instantiations of a generic unit prior to the compilation of that unit's body;
as allowed by AI-00408 and AI-00506, the compilation of the generic unit bodies
makes the compilation unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as directed
by the AVO. These tests check that instantiations of generic units with
unconstrained types as generic actual parameters are illegal if the generic
bodies contain uses of the types that require a constraint. However, the

2-4

IMPLEMENTATION DEPENDENCIES

generic bodies are compiled after the units that contain the instantiations,
and this implementation creates a dependence of the instantiating units on the
generic units as allowed by AI-00408 and AI-00506 such that the compilation of
the generic bodies makes the instantiating units obsolete--no errors are
detected. The processing of these tests was modified by re-compiling the
obsolete units; all intended errors were then detected by the compiler:

BC3204C: CO, Cl, C2, C3M, C4, C5, C6, C3M

BC3205D: DO, DlM, D2, DIM

BC3204D and BC3205C were graded passed by Test Modification as directed by the
AVO. These tests are similar to BC3204C and BC3205D above, except that all
compilation units are contained in a single compilation. For these two tests, a
copy of the main procedure (which later units make obsolete) was appended to
the tests; all expected errors were then detected.

CD2A53A was graded inapplicable by Evaluation Modification as directed by the
AVO. The test contains a specification of a power-of-lO value as 'SMALL for a
fixed-point type. The AVO ruled that, under ACVC 1.11, support of decimal
'SMALLs may be omitted.

AD9001B and AD9004A were graded passed by Processing Modification as directed
by the AVO. These tests check that various subprograms may be interfaced to
external routines (and hence have no Ada bodies). This implementation requires
that a file specification exists for the foreign subprogram bodies. The
following commands were issued to the Librarian to inform it that the foreign
bodies will be supplied at link time (as the bodies are not actually needed by
the programs, these commands alone are sufficient:

ALC40 interface/system AD9001B

ALC40 interface/system AD9004A

CE2103A, CE2103B, and CE3107A were graded inapplicable by EValuation
Modification as directed by the AVO. The tests abort with an unhandled
exception when USE ERROR is raised on the attempt to create an external file.
This is acceptable behavior because this implementation does not support
external files (cf. AI-00332).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described adequately
by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

Mr Ken Butler
Vice President, Product Development
Tartan Inc.
300, Oxford Drive
Monroeville, PA 15146 USA
Tel. (412) 856-3600

For sales information about this Ada implementation, contact:

Ms Marlyse Bennet
Tartan Inc.
12110 Sunset Hills Road
Suite 450
Reston, VA 22090 USA.
Tel. (703) 715-3044

Testing of this Ada implementation was conducted at the customer's site by a
validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test of
the customized test suite in accordance with the Ada Programming Language
Standard, whether the test is applicable or inapplicable; otherwise, the Ada
Implementation fails the ACVC [Pro92].

For all processed tests (inapplicable and applicable), a result was obtained
that conforms to the Ada Programming Language Standard.

3-1

PROCESSING INFORMATION

The list of items below gives the number of ACVC tests in various categories.
All tests were processed, except those that were withdrawn because of test
errors (item b; see section 2.1), those that require a floating-point precision
that exceeds the implementation's maximum precision (item e; see section 2.2),
and those that depend on the support of a file system -- if none is supported
(item d). All tests passed, except those that are listed in sections 2.1 and
2.2 (counted in items b and f, below).

a) Total Number of Applicable Tests 3440
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 86
d) Non-Processed I/O Tests 285
e) Non-Processed Floating-Point

Precision Tests 264

f) Total Number of Inapplicable Tests 635 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A TK50 cartridge containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the TK50
cartridge were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of tests
was processed by the Ada implementation.

The tests were compiled and linked on the host computer system, as appropriate.
The executable images were transferred to the target computer system by the
communications link, an RS232"Interface, and run. The results were captured on
the host computer system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of the
processing options for this implementation. It also indicates the default
options. The options invoked explicitly for validation testing during this test
were:

Options used for compiling:

/C40 Invoke the C40-targeted cross compiler. This qualifier
is mandatory to invoke the C40-targeted compiler.

/REPLACE Forces the compiler to accept an attempt to compile a
unit imported from another library which is normally
prohibited.

/NOSAVESOURCE Suppresses the creation of a registered copy of the
source code in the library directory for use by the
REMAKE and MAKE subcommands to ALC40.

No explicit linker options were used.

Test output, compiler and linker listings, and job logs were captured on a TK50
cartridge and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3-2

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC. The
moaning and purpose of these parameters are explained in (UGS9]. The parameter
values are presented in two tables. The first table lists the values that are
defined in terms of the maximum input-line length, which is the value for
$MAX_INLEN--also listed here. These values are expressed here as Ada string
aggregates, where "V" represents the maximum input-line length.

Macro Parameter Macro Value

$MAX IN LEN 240 -- Value of V

$BIG-ID1 (l..V-1 W>'A, V =>'1')

SBIG-ID2 (l..V-1 W>'A, V ->'2')

$BIG-ID3 (l..V/2 a>'A') .& '3' &
(1. .V-l-V/2 -> 'A')

$BIG_1D4 (l..V/2 -> WA) & 4' &
(1..V-l-V/2 W>'A)

$BIG INT LIT (l..V-3 -> '0') &"298"

$BIG REAL LIT (l..V-5 -> '0') &"690.0"

SDIG-STRING1 "n* & (1. .V/2 -> 'A) &..

$BIG-STRING2 '"t & (l..V-l-V/2 -> 'A) & '1'&

$BLANKS (l..V-20 -

$MAX..LEN.INT-BASED LITERAL
"K2:" &(l..V-5 -> 0') & "11:"

$MAXLEN REAL BASED -LITERAL
"16:" & (..V-7 -> 0') & "F.E:"

$MAXSTRING LITERAL ''&(l..V-2 -> 'A') &In

The following table lists all of the other macro parameters and their
respective values..

MACRO PARAMETERS

Macro Parameter Macro Value

$ACC-SI ZE 32

$ALIGNMENT 1

$COUNT-LAST 2147483646

$DEFAULT HEM SIZE 1 6#FFFFFFFF#

SDEFAULT STOR UNIT 32

$DEFAULT-SYS NAME T1320C40

$DELTA-DOC 2#1. 0#E-3 1

$ENTRY-ADDRESS SYSTEM.ADDRESS' (16#2FF803#)

$ENTRY ADDRESS 1 SYSTEM.ADDRESS' (16#2FF804#)

$ENTRY ADDRESS2 SYSTEM.ADDRESS' (16#2FF805#)

SFIELD-LAST 240

$FILE-TERMINATOR

$FIXED-NAME NO-SUCH TYPE

$FLOAT-NAME NO-SUCH TYPE

$FORM-STRING

$FORM STRING2 "CANNOT RESTRICT-FILE CAPACITY"

$GREATER THAN DURATION 10000.0

$GREATER-THAN DURATION BASE LAST
- 131 073. 0

$GREATER-THAN FLOAT BASE LAST
3.590282E+38

$GREATER THAN FLOAT SAFE LARGE
1 ý?Y+38

$GREATER THAN SHORT FLOAT SAFE LARGE
1.01+38-

$HIGH-PRIORITY 100

$ ILLEGALEXTERNAL FILE NAME1
!fLLEGAL-EXTERNAL-FILZ-NAME1

$ILLEGALEZXTERNAL-FILE NAME 2
ILLEGAL EXTERNAL FILE NAME2

$ INAPPROPRIATE LINE LENGTH
-1

$ INAPPROPRIATE PAGE LENGTH
-1

$INCLtJDE PRAGMAl PRAGMA INCLUDE ("A28006D1.TST-)

A-2

MACRO PARAMETERS

$INCLUDE PRAGMA2 PRAGMA INCLUDE (-B28006F1.TST")

$INTEGER-FIRST -2147483648

$INTEGER-LAST 2147483647

SINTEGER LAST PLUS 1 2147483648

$ INTERFACELANGUAGE TI-C

SLESS THAN DURATION -100 000.0

$LESS THAN DURATION BASE FIRST
11073.0

$LINETERMINATOR

SLOW-PRIORITY 10

$MACHINE CODE STATEMENT
Two Opndu' (LDI, (Imm,5), (Reg,RO));

SMACHINE CODE TYPE Instruction-Mnemonic

$MANTISSA-DOC 31

$MAX-DIGITS 9

SMAXINT 2147483647

SMAX-INT PLUS 1 2147483648

$MIN INT -2147483648

$NAME NO-SUCH TYPE AVAILABLE

$NAME-LIST T1320C40

SNAME-SPECIFICATIONi DUA2: [ACVC11.C30.TESTBED]X2120A.;4

$NANE-SPECIFICATION2 DUA2: (ACVC11.C30.TESTBEDJX212OB. ;1

$NAME-SPECIFICATION3 DUA2: (ACVC11.C30.TESTBED]X3119A.;4

SNUG BASED INT 16#?FFFFFFE#

$NEW MEM SIZE 16#FFFFFFFF#

$NZW STOR UNIT 32

$NEW SYS NAME T1320C40

SPAGE-TERMINATOR II

SRECORD DEFINITION record Operation: Instruction Mnemonic;
operand -1: operand; Operand 2: Operand;
end record;

S RECORD NAME TwoOpnds

$TASK-SIZE 32

$TASK STORAGE SIZE 4096

$TICK 0.00006103515625

A-3

MACRO PARAMETERS

$VARIABLE-ADDRESS SYSTEM.ADDRESS' (16#2FF8000)

$VARIASLEADDRESS1 SYSTEM.ADDRESS' (16#2FFS010)

$VARIABLE-ADDRESS2 SYSTEM.ADDRESS' (16#2FF802#)

$YOUR-PRAGMA NO-SUCH PRAGMA

A-4

APPENDIX S

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise, references
in this appendix are to compiler documentation and not to this report.

B-1

Chapter 4
Compiling Ada Programs

The TADA/ C 4 0 command is used to compile and assemble Ada compilation units.

4. 1. THE TAD A/C 40 COMMAND
Format: The TADA/ C 40 coimniand has this formnat

S TADA/ C 40 C /qualifier C (option, . . .) .. . I file-spec C lqtalifter([(option,..)..

The parameter file-spc is a source file name. Since the source files need no reside in the directory in which
the compilation takes place. file-spec must include suffcient directory information wo locate the file. If no
extension is supplied with the file name. a default extension of .ADA will be supplied by the compiler.

The source file may contain mome than ome compilation unit. but it is considered good practice to place only
one compilation unit in a file.

Output: The compiler sequentially processes all compilation units in the file. Upon successful compilation
of a unit.

e The Ada program library. LIBRARY . DB. is updated to reflect the new compilation time and any new
dependencies

* One or more separate compilation fale and/or object files ame generated.

If no emno are detected in a compilation unit. the compiler produces an object module and updates the
library. If any erro is detected, no object code file is produced, a source listing is produced. and no library entry
is made for that compilation unit. If warnings are generated. both an object code file and a source listing are
produced, and the librar is updated.

Reflneunutv. The compiler is capable of limiting the number of library units that become obsolete in the
following mane. A library unit is a refinemtem of its previously compiled version if the Only changes that were
made ame:

"* Adding or deleting of commnts
"* Adding subprogram specifications after die Iast declarative item in the previous version

A qualifier is required to caus the compile to detect refinements. When a refinement is detected by fth
cmie., dependenit units are not miarkd as obsolete. If a unit is a refinement of its previous compilation. no
ohrunit dependent on it becomes obsolete becaus of this recompilation. The exception to this rule is. the body

of the specification is still obsoiet for the case where a now declaration was added.

COCPILATION SYSTEM MANUAL

4.2. COMMAND QUALIFIERS
Command qualifiers indicate special actions to be performed by the compiler or special output file properties.

A qualifier identifying the target-code format must be used to invoke the C40-targeted compiler. The following
qualifiers are available:

/ C 40 Invoke the C40-targeted cross compiler. This qualifier is mandatory to
invoke the C40-targeted compiler.

/ CALLS-option Allows the user to specify the size of the address space into which the
linked application code will fit. The compiler will generate code, based
on the user's assertion. The available options are:

LONG The user asserts that the linked application code will not
fit within a 23-bit (223 - 1) address space.

SHORT The user asserts that the linked application code will fit
within a 15-bit (215 - 1) address space.

If the /CALLS-SHORT assertion is incorrect, the 'in will produce
error messages at link-time. If the /CALLS-LONG switch is given and
the code fits within a 23-bit (223 - 1) space. no error is given by the
linker, because the code is still correct; however, it is less efficient. By
default, the compiler will Senerate code assuming that the linked applica-
tion code fits within a 23-bit (223 -1) address space.

/CROSS REFERENCE
/NOCROSSREFERENCE [Default]

Controls whether the compiler generates cross-reference information in
the object code file to be used by the TXREF tool (see Section 4.5). This
qalifier may be used only with the Tartan Tool Set.

I/DATAPAGE ISROM Limit data-page references to compile- and Link-time constants. Stati-
Caily allocated variables normally acCUeed Using data page addressing
will be reached via "long referen-es4 This option must be used on all
compilation units of an application if it is used on any one.

/DEBUG
/NODEBUG [Default] Conrols whether debugging information is included in the object code

file. It is net necessary for all object modules to include debugging
inkfmnation to obtain a linkable image, but use of this qualifier is en-
couraged for all compilations. No srigificant exection-atm penalty is
incunred with this qualifier.

/DELAYED BRANCHES [Default]
/NODELAYEDBRANCHES Controls whether the compiler generates delayed brnch insru-ctons

(detailed in Section 11.4).

/ ENUMERATION-IMAGES (Default
/ NOENUMERATIONIMAGES Caus the compiler to omit data segments with the text ofmera'io

literals. This tet is normally produced for exported enumeration types in
order to support the text atribut (' IMAGE. 'VALUE and 'WIDTH).

COIPILLNG.ADA PROGRAMS

You should use .,C-,U._--.N -RG-S only when you can
guarantee that no unit that will import the enumeration type will use any
of its text amtibutes. However. if you are compiling a unit with an
enumeration type that is not visible to other compilation units. this
qualifier is not needed. The compiler can recognize when the text at-
ribues are not used and will not generate the supporting strinp.

/ERRCR_LIMIT=n Stops compilation and produces a listing after n errors are encountered.where n is in he range 0 .. 255. The default value for n is 255. The
/ERRORLIMIT qualifier cannot be negated.

/FIXUP[-option] When package Machine Code is used. controls whether the compiler
attempts to alter operand address modes when those address modes am
used incorrectly. The available options are:

QUIET The compiler attempts to generate exra instuctions to
fix incorrect address modes in the army aggregates
operand field.

WARN The compiler attempts t generate extra instructons to
fix incorrect address modes. A warning message is
issued if such a correcuon is required

NONE The compiler does not attempt to fix any machine code
insertion that has incorrect address modes. An error
message is issued for any machine code insertion that is
incorrect.

When no form of this qualifier is supplied in the command line. the
default condition is /F IXUP-QUIET. For more information on machine
code insertions. refer to Section 5.10 of this manual.

/HUGE LOOPS (Default]
/NOHUGELOOPS When the NOHUGELOOPS qualifier is specified, the user is asserting

that no loops will iterate more than 223 times. This limit include non-
user specific loops, such as those loops generated by the compiler to
operate on large objectL. Eroneous code will be generated if this asser-
tion is false.

/ LIBRARYwiibrary-namw Specifies the library into which the file is to be compiled. The compiler
still reads any ADALIB. INI files in the default directory and will report
any asociated ersT. but this qualifier will override the ADALIB. INI.

/ LIST(-option]
/NOLIST Conrols wiber a listing file is produced. If produced the file baa the

source file name and a .L IS extsaion. The available options am:

ALWAYS Always produce a listing file

NEVER Never produce a listing file, equivalent to /NOLIST

ERROR Produce a listing file only if a compilation err or wan-
ing occurs

COMPILATION SYSTEM MAINUAL

When no form of this qualifier is supplied in the command line, the
default condition is i 3:_-TERRCR. When the L:37 qualifier is sup-
plied without an option. the default option is ALWAYS.

/MAC: NE _CODE[=opti on] Controls whether the compiler produces an assembly code file in addition
to an object file. which is always generated. The assembly code file is
not intended to be input to an assembler, but serves as documentation
only. The available options are:

NONE Do not produce an assembly code file.

:NTERLEAVE Produce an assembly code file which interleaves
source code with the machine code. Ada source
appears as assembly language comments.

NO INTERLEAVE Produce an assembly code file without interleaving.

When no form of this qualifier is supplied in the command line. the
default option is NONE. Specifying the /MACHINE_CODE qualifier
without an option is equivalent to supplying
/MACHINECODE-NOINTERLEAVE.

/MAXRPTSCOUNT-n Controls the maximum iteration cotmt for a loop using the RPTS instruc-
tion. where n is an ineger in the range -I .. 231 -l. Since an S loop is
non-intemrruptible, this qualifier allows conwol over the interrupt latency
time. The default value is 32. A value of minus one (-1) specifies no
limit. A value of zero (0) specifies than that no RPTS instructions will be
generated. Any positive value sets the maximum iteration count. If a
value in the range 0 .. 31 is used it will be necessary to customize the
runtimes. Please contact Tartan for information on how to perform these
customizations.

,PT:M.:zE=opion ContzrIs the level of optimization performed by the compiler according
to the following options: MINIMUM, LOW, STANDARD, CIME, and
SPACE. The results of the options an:

MINIMUM Performs context determination. constant folding. al-
gebraic manipulation, and short circuit analysis. miin
are mot expanded.

LOW Performs MINIMUM optimizations plus common sub-
expression elimination and equivalence propagation
within basic blocks. It also optimizes evaluation order.
Ifimes are not expanded. AdaScope performs best when
compiled at this level.

STANDARD (Bes tradeoff for space/time) - default option. Performs
LOW optimizeatns plus flow analysis which is used for
common subexpnession elimination and equivalence
propagation aross basic blocks. It also performs in-
vauiant expression hoisting, dead code elimination. and
aiSmenmt killing. With STANDARD optim tiz ion.
lifetime analysis is performed to improve reaint alloca-
tion and if posaible, inline expansion of subprogram calls
indicated by pragma INLINE are performed.

4-'

oIaPMG ADA PROGRAMS

.-:ME Performs S:A.NCARZ optmizatons plus inline expan-
sion of subprogram calls which the optimizer decides are
profitable to expand (from an execution tim perspec-
tive). Other optmizations which improve execution time
at a cost to image size are performed only at this level.

SPACE Performs those opumizations which usually produce the
smallest code, often at the expense of speed. Please note

that this optimization level may not always produce the
smallest code. Under certain conditions, another level
may produce smaller code.

/ PARSE
/NOPARSE Extracts syntactically corct compilation unit source from the parsed file

and loads this file into the library as a parsed un. Parsed units axe. by
definition. inconsistent. This switch allows users to load units into the
library without regard to correct compilation order. The command
.REMAKE is used subsequently to reorder the compilation units in dte
correct sequence. See Section 13.2.4.3 for a more complete descption
of this command.

/PHASES
/ NOP HAS .S [Default] Controls whether the compiler announces each phase of processing as it

occurs. These phases indicate progress of the compilation. If there is an
error in compilation, the error message will direct users to a specific
location.

/REF:NE
/ NOREF INE (Default] Controls whether the compiler. when compiling a library umt, determines

whether the unit is a refinement of its previous version and. if so. does
not make dependent units obsolete. The default is / NOREF I NE.

"/ REMAKE Data on this switch is provided for information only. This switch is used
exclusively by the Tartan Ada Librarian to notify the compiler that the
source undergoing compilation is an intemal source file. The switch
causes the compiler to mrtin old external source file information. This
switch should be used only by the librarian and command files created by
the librrian. See Section 3.6.1.

/REPLACE
/!NOREPLACE (Default] Forces the compiler to accept an attempt to compile a unit imported from

another library which is normally probibited.

/REV-n Revision of the C40 silicon where n is n iteger in the range I .. 2. The
default value for n is 2.

/ SAVESOURCE [Default]

COMPILATION SYSTEM MANLTAL

NOSAVESOURCE Suppresses the creation of a registered copy of the source code in the
library directory for use by the REMAKE and MAKE subcommands to
ALC40.

/SUP PRESS[[-(option, ...)] Suppresses the specific checks identified by the options supplied. The
parentheses may be omitted if only one option is supplied. Invoking this
option will not remove all checks if the resulting code without checks
will be less efficient. The / SUPP RE•S• S qualifier has the same effect as a
global pragma SUPPRESS applied to the source file. If the source
program also contains a pragma SUPPRESS, a given check is suppressed
if either the pragma or the qualifier specifies it: that is. the effect of a
pragma SUPPRESS cannot be negated with the command line qualifier.
The /SUPPRESS qualifier cannot be negated.
"The available options are:

ALL Suppress all checks. This option is the
default when no option is supplied.

ACCESSCHECK As specified in he Ada LRM Section 11.7.

CONSTRA:NTCHECK Equivalent of all the following:
ACCESS_ '"ECK. INDEXCHECK,
DIqCRiMINANTCHECK,
LENGTH_CHECK. RANGE CHECK.

DISCRIMINAN;'_CHECK As specified in the Ada LAX Secuon.1 1.7.

DIVISIONCHECK Will suppress compile-time checks for divi-
sion by zero. but the hardware does not per-
mit efficient runime checks, so none are
done.

ELABORATIONCHECK As specified in the Ada LRM. Section 11.7.

INDEXCHECK As specified in the Ada LRM Section 11.7.

LENGTHCHECK As specified in the Ada LRM. Section 11.7.

OVERFLOWCHECK Will suppress compile-time checks for over-
flow, but the hardware does not permit ef-
ficient runime checks, so none are done.

RANGE CHECK As specified in the Ada LRM. Section 11.7.

STORAGECHECK As specified in the Ada LRM. Section 11.7.
Suppresses only stack checks in generated
code, not the checks made by the allocator as
a result of a new operation.

/SYNTAX ONLY
/ NOSYNTA•XONLY [Default] Examines units for syntax errors, then stops compilation without entering

a unit in the library.

/WARNINGS [Default]
/NOWARNINGS Controls whether the warning messages generated by the compiler are

displayed to the user at the terminal and in a listing file. if produced.
While suppressing warning messages also halts display of infrmatonal
mesaages, itdoes not suppress Error. FatalError.

M0.'LD4G ADA PROGRALMS

'WA::T STATES-.

WA:-- S- -ATES=opton: n *,option: n
The wait states command line qualifier accepts either a single numeric
digit or a list of one or more options.

A single numeric digit specifies the number of wait states to use for
prop=am code. data pap. heap. and stack, where n is an integer in the
range 0 .. 7. The default value for n is 2 or the maximum wait state of
program code, data page, heap, or stack.

The following options may be specified:

CODE:n Specifies the number of wait states for the block of
memory in which program code will be executed, where
n is an integer in the range 0 .. 7. The default value forn
is 2.

DATA:n Specifies the number of wait states for the block of
memory where the data page for the current compilation
unit resides. where n is an integer in the range 0 .. 7. The
default value for n is 2.

HEAP:n Specifies the number of wait states for the block of
memory where the heap resides, where n is an integer in
the range 0 .. 7. The default value for n is 2.

STACK:n Specifies the number of wait states for the block of
memory where the stack resides. where n is an integer in
the range 0 .. 7. The default value for n is 2.

Examples:
TADA/C40/WAIT STATES-4
TADA/C40/WAIT-STATES-(CODE:4, DATA:2)TADA/C40/WAIT• (C: 1,0D:2, : 3, S:4)

TADA/C40/WAIT STATES- (HEAP-!, STACK-7)
TADA/C40/WAIT STATES :2
TADA/C40/WAIT--CODE: 1

Noe that " and ":'" are intrehaneable. A keyword can be
specified by using only enough characters to make it unique. When more
than aoe option is specified, the list of options must be enclosed inparentbse.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise, references
in this appendix are to linker documentation and not to this report.

B-2

THE TARTAN LOOM

2.2. INVOKING THE LINKER
The linker may be invoked either through the Ada librarian, or directly by the user. Invocation through the

librarian ensures that all Ada language consistency and dependency requirements are met. Use of the librarian is
the most common way of linking an Ada program. Direct invocation of the lin is used mostly for link
operations that are outside the boundaries of an Ada program. Examples of the latter are consruction of
assembly language boot images, combining multiple Ada programs into a single image, or creating patches for an
existing program.

2.2.1. Using the Tartan Librarian to Invoke the Linker
Normally, Ada programs are linked using the Ada librarian. The command for linking through the librarian is

$ ALC40 LINK [iqualifier...] main unit

The parameter mainunit must be supplied. It specifies the unit in the library to be made the main program.

The use of the Ada librarian commands to link a program is described in the Compilation System Manual.
Chapters 3 and 9. Here we will describe the interface between the librarian and the linker, and the manner in
which the necessary information is passed.

The Ada librarian's LINK subcommand checks that the unit within the library specified by the user has the
legal form for a main unit. checks all its dependencies. finds all required object files, and invokes the linker. The
librarian creats two files that am used as input to the link process. These files ar listed by name below;, the
name main-unit refers to the name of the main program unit.

main unit. CTL This file contains the list of object files that ane to be included in the link. The file
is written as a list of linker WITH commands. each specifying a file to be included.

main unit. etof This object file contains a procedure to perform elaboration of the Ada program.
The code in this file is included in the executable and will ultimately be invoked
by the Ada ruanmes when the program is executed.

These files ar normally deleted by the Ada librarian at the completion of the link step. They may be retained
by use of the qualifier / KEEP, described in the Compilation System Manual, Section 13.5.10. If no changes are
made to the program that would invalidate the dependency and closure information contained in these files
subsequent links may be performed by invoking the linker directly.

After writing the necessary files, the Ada librarian invokes the linker. The invocation performed is equivalent
to the following user-level command:

$ TLINKC40 /CONTROL-linker control-file /OUTPUT-mainunit.XTOF

In this example, linkercontrol file is the name of a file containing linker contol commands. This con••ol file
describes the details of how the progm image is to be consructed for the particular target system. The user
may specify to the Ada libarian which linker cont•l file to use. If no file is specified. the librarian uses a default
conanl file located in the TADAHOME directory and named TLINKC40. LCF. Note that the default conoro file
expects the qualifier / OUTPUT- to be specified in the command line. It also expects the file mainunit. CTL to

2.2.2. Direct Invocation of go Linker
he linr is conrolled by command qualifiers ad by cmmands in a linker conrl file. Command

qualifiers ame used to specify things that vary according to the particuilar link being performed. Examples Are fth
name of the output file. whether or not to produce a link map. and whether to eliminate unused code. The conrol
file is umd to specify in gneral how to build a pWogram for the particular target system and hadw•are. The
command qualifiers may vary with each link. but the control file is usually fixed for the system at hand.

The genral frmat of the invocadon of the linke is
$ TLINKC40 /CONTROL-linker.conirvifile [Iqualifier...] filespec...

LNXMMANUAL

Some command qualifiers specify particular file names (for example. the name of the linker control file).
Other file names may also appear in the command line: these names are interpreted as the names of object files to
be included as input to the link process. Input files may also be specified within the linker control file.

When the linker is invoked directly, the qualifier /CONTROL-linker conrrolJfile must be supplied in the
command line. (When invoked by ALC 40, it is the librarian, not the linker, that supplies a default linker control
file.) This command qualifier directs the linke to the control file that specifies how to perform the link. Only
one such file may be specified. A user who does not have a special control file may use the default file used by
the Ada librarian. Refer to the previous section for a description of the link process used by the Ada librarian.

The additional arguments to the linker depend upon the convention used by the control file you specify. For
example, input object files may be specified on the command line, in the control file. or in another linker control
file. Specification on the command line is convenient if a small number is involved. For larger numbers of input
files, the WITH command (Section 2.6.5) may be used inside the linker control file. or in another linker control
file included with the CONTROL file command.

If your control file uses the same convention as the default one. the command line will look like:

S TLINKC40 /CONTROL-linker_comrol'fle /OUTPUT-owiile.xtof

The control file would then expect that the file owfle. ct-l contains the list of input file WITH commands. A
CONTROL command in the linker control file causes this additional file to be read. A derived file specification
(see Section 2.6.9) is used in the CONTROL command to allow the linker to infer the file name from the specified
output file name.

The convention used by the default control file is only one way in which arguments could be specified. Your
own linker control file can be set up to expect the input and output file on the command lime, or to derive the
output filename from a specified input file. or to specify both in the control file. The convention used in
special-purpose control files can be adjusted to fit the circumsrnuces at hand. Section 2.5.2 introduces the WITH.
OUTPUT, and CONTROL commands that are used to set up customized conventions.

A user who is simply refinking a program will need to know only a couple of command qualifiers and the
convention established by the system-specific linker control fie used for the system. A user who needs to alter
the program layout for a specific target system will require the wider spectrum of commands available in the
linker control file. Command qualifiers are des-cibed in the next section; the linker control file commands are
described in Section 2.5.

K_

THE TARTAN LVM

2.3. COMMAND QUALIFIERS
This section descibes the command qualifiers available to a user who directly invokes the linker. The

qualifier names can be abbreviated to unique prefixes; the first letter is sufficient for all current qualifier names.
The qualifier names am not case sensitive.

/CONTROL-linker-coparolfile
The specified file contains linker control commands. Only one such file may be
specified, but it can include other files wsing the CONTROL command. Every
invocation of the linker must specify a control file.

/OUTPUT=filename The specified file is the name of the first output object file. The module name for
this file will be null. Only one output file may be specified in this manner.
Additional output files may be specified in the linker control file.

/MAP Produce a link map containing all information except the unused section listings.
When /MAP is specified without a file name. the name of the file containing the
link map is specified by the LIST command in the linker control file. If your
control file does not specify a name and you request a lsing, the isting will be
written to the default output stea.

/MAP'filename Produce a link map containing all information except the unused section listings.
The map is written to the specified file.

/ALLOCATIONS -Produce a link map showing the smcon allocations.

/UNUSED Produce a link map showing the unused sections.

/ SYMBOLS Produce a link map showing global and external symbols.

/LOCALS-filename Causes the linker to remain local symbol definitions in the output file specified.

/RESOLVEMODULES This qualifier causes the linker to not perform unused section elimination.
Specifying this option will generlly make your program larwer, since un-
referenced dam within object files will not be eliminated. Refer to Sections 2.6.3
and 2.43.2 for information on the way that unused section elimination works.

Note that several listng options are permitted because link maps for rel systems a becoan rather large.
and writing them consumes a significant fration of the total link aame. Options specifying the comtens of the
link map can be combined, in which cas the resulting map will contain all the information specified by any of
the switches.

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions as
mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix, are
provided by the customer. Unless specifically noted otherwise, references in
this Appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not a part
of Appendix F, are:

package STANDARD is

type INTEGER is range -2 147 483 648 .. 2 147 483 647;
type FLOAT is digits 6 range--1670.1000_0U#E+53 -- 16#0.FFFFFF#E+32;

type LONG FLOAT is digits 9 range -16#0.1000_000 0#E+33 ..
19#0.FFFF FFFF_0#E+32;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

-- DURATION'SMALL - 2#1.0#E-14 (that is, 6.103516E-5 sac)

..... I....

end STANDARD;

C-i

Chapter 5
Appendix F to MIL-STD-1815A

This chapter contains the required Appendix F to the lJRM. which is Milita&y Standard, Ada Programming
Language, ANSI/MIL-STD- 1815A (American National Standards Institute. Inc., February 17, 1983).

5.1. PRAGMAS

5.1.1. Predefined Pragmas

This section summarizes the effects of and res'ction on predefined prapas.

" Access collectics are not subject to automatic storage reclamation so pragma CONTROLLED has no effect.
Space deallocated by means of UNCHECKEDDEALLOCATION will be reused by the allocation of newobjects

"* Pragma ELABdRATE is supported.

"* Pragma INLINE is supported.

"* Pragpa INTERFACE is supported. The LANGUAGE NAME TIC is used to make calls to subprograms
(written in the Texas histtuments C language) fromn Tartan Ada. Any other LANGUAGE-NAME will be
accepted, but iuored, and the default language, Ada, will be used.

"* Pragma LIST is supported but has the intended dffect only if the command qualifier /LIST-ALWAYS was
supplied for compilation, and the lHaing generated was not due to the presence of eon and/or warnins.

"O Prg•i MEMORY_SIZE is supported. See Section 5.1.3.

" Pragma OPTIMIZE is supported except when at the outer level (that is, in a package specification or
body).

"* Pagima PACK is supported.

"* Pragma PAGE is supported but has the intended effect only if the conmand qualifier 'T I ST-ALWAYS was
supplied for compilation, and the listing generated was not due to the presence of errn ad/or warnings.

"* P•agma PRIORITY is supported.

"* Prugma STORAGE-UNIT is accepted but no value other than that specified in package SYSTEM (Section
5.3) is allowed.

"* Pragma SHARED is not suppored.

"* Pragma SUPPRESS is supported

"* Pragia SYSTEM NAME is accepted but no value other than chat specified in package SYSTEM (Section
5.3 is allowed.

5.1.2. Implnewnadon-Deflasd Prapmas

ImplemI naio.defud pragmas povided by Tartan ae described in the following sections.

CONGWIL.ATTON SYSTEM MANUAL

5.1.2.1. Prop= LINKAGE NAM1,E
The pragma :INKAGE_,NAME associates an Ada entity with a string that is meaningful externally; for

example. to a linkage editor. It takes the form
pragmn LINKAGE-NAME (Ada-simple-name. sirrng-consrara)

The Ada-simple-name must be the name of an Ada entity declared in a package specification. This entity must be
one that has a runtime repreentation: for example. a subprogram exception or object. It may not be a named
number or string constanti The pragma must appear after the declaraton of the entity in the same package
specification.

The effect of the pragusa is to cause the string-coitanu to be used in the generated assembly code as an
external name for the associated Ada entity. It is the responsibility of the user to guarantee that this string
constant is meaningful to the linkage editor and that no illegal linknmame clashes arise.

This pragnia has no effect when applied to a subprogram or to a renames declaration: in the Lauter case. no
warning message is given.

When determining the maximum allowable length for the external Linkage name. keep in mind that the
compiler will generate names for elaboration flagp simply by appending the suffix *GO-.O. Therefore. the
external linkage name has 5 fewer significant characters than the lower Limit of other tools that need to process
the name (for example, 40 in the case of the Tartan Linker).

Note: Names used as pragina LINKAGENAME are case sensitive. For example.
aNy_ Old LINKrname is not equivalient to ANYOLDLINKNAME. Therefore. a misspelled
linimame will caus the link to fail.

5.1.2.2. Prqua FORE IGN BODY

In addition to pragma INTERFACE. Tartan Ada supplies pragma, FOREIGN-BODY as a way to access
subprograms in other languages.

Unlik pragnia INTERFACE, pragnma FOREIGN-BODY allows access to objects and exceptions (in addition
to subprograms) to and from other languages.

There are some restrictions on pragina FORE IGNBODY that are not applicable to pragnia INTERFACE:

* Pragna FORE IGN_ BODY must appear in a non-generic library package.
"* All objects. exceptions and subprograms in wech a packcage must be supplied by a foreign object module.
"* Types may not be declared in such a package.

Use of the pragnia FORE IGNBODY dictates that all subprograms, exceptions and object in the package are
provided by mesin of a foreign object module. In order to successfully link a program including a foreign body,
the object module for that body must be provded to the librry using the ALC40 FORE IGNBODY command
described in Section 3.3.3. The pragmna is of the fom*

pragmu FOREIGNBODY (Language name C, eiaoration-rowine name])

The parameter LAnguiage nene is a string innued to allow the compiler to identify the calling convention
used by the foreig module (but this fnctionality is not yet in operaton). Currently, the programmer must
ensure that the calling convention and data representation of the foreig body procedure are compatible with
thoe used by the Tarta Ads Compiler (see Section 6.5). Subprograms called by taskstshoud be reentrant.

Tie optional ekaboranon routine name string argument is a linkage name identifying a routine to initialize
the package. The a rouine specified as the elaboradon routine name, which will be called for the elaboration of
this package body. must be a g&ba routne in the object modul Provided by the user.

A specification wha usa this prawn may contai only subprogrm declarations. objec declarations that use
an uncaustrained type nark and number declarations. Pragam may also appear in the package. The type mark
for anobject cannt be a tea type, An th object declaratio must not have an initial value expreuOn. TIem
puagina mast be given prior to any declarations widun the package specifcation. If the pragma is aom located
Ibmforea the Ems declaration, or any restriction on the declarations is violated, the pragni is ignored and awang
is gueneraed.

-PPEXDLXF TO .MLSTD..iSlSA

The foruign body is enirely responsible for initializing objects declared in a package utilizing pragma
CRE:GN BODY. In parucular. the user should be aware that the implicit initi.lizanons described in LRM 3.2-1

am n done by the compiler. (The impit initiaLzaos are associated with objects of access types, certain
record types and compouite types containing components of the preceding kinds of types.)

Puagma LINKAGENAME should be used for all declaations in the package, including any declarations in a
nested package specification to be sure that there am no cornficting linkizaes. If p L-NKAGE NAME is
not used, the "os- reference qualifier. /CROSS REFERENCE. (see Section 4.2) should be used wheninvoking
the compiler. The resulting crass-reference table of liknkames should then be inspected to determnine that no
conflicting liiknmes have been assiipged by the compiler (see also Section 4.5). In the following example, we
wan to call a function plmn which computes polynomials and is written in assembly.

package MATH FUNCTIONS is
pragma FOREIGN BODY (*assembly");
finCtIon POLYNOMIAL (X: INTEGER) return INTEGER;

-- Ada spec matching the assembly routine
pmEUII LINKAGE NAME (POLYNOMIAL, *plmn");

-- Force compiler to use name 'plmn* when referring to this
-- function

end MATHFUNCTIONS;

with MATH FUNCTIONS; We MATH-FUNCTIONS;
procedure MAIN is

X:INTEGER :- POLYNOMIAL(10);
-- Will generate a call to wplmn"

end MAIN;

To compile, link and run the above program you muas

1. Compile MATHFUNCTIONS

2. Comple MAIN

3. Provide the object module (for example, math. TOF) containing the assembled code for plmn

4. Issue the command

$ ALC40 FOREIGN MATH FUNCTIONS MATH.TOF

5. I:ssue the command~

S ALC40 LINK MAIN

Without St•p 4. an attempt to link will produce am eror message informing you of a missing package body for
MATH-FUNCTIONS.

Using an Ada body from lamoer Ada program lIbrary. The user may compile a body written in Ada for a
specificatics into the library. regardieu of the language specified in the pragmna contained in the specificatioa.
Tia capabilay is usef•l for rapid prowryping. where an Ada package may seve to provide a smulated tesponse
for th ftnctionality that a foreign body may eventually produce. It also allows the user to replace a foreign body
with an Ads body witbout recompiling the specification.

TM user can eit•r compile an Ads body into th library, oruse the command ALC40 FOREIGNBODY (see
Section 333) to ue an Ada body fmom aniote library. ThM Ad• body from anotdr library m ihave been
compled ud an kidecal sapecihcado. The pragua LINKAGE NAME must have bue applied to all entities
declared in the specification. MT only way to specify the linkn•• for the elabormtion routine of an Ada body is
with th pragma FORE IGNBODY.

CONWILATION SYSTE.M MANUAL

5.1.3. Pragma .MEMORY_ SIZE
This section details the procedure for compilation of a new unit. such as pragnia MEMORYSIZE. with a

system pragma. The new unit must be compiled into a library that contains package SYSTEM. For most users.
dte STANDARD_PACKAGES library will be the libmary that also includes package SYSTEM.

I. Thaw STANDARDPACKAGES. SPEC.

2. Compile this unit into STANDARD-PACKAGES. ROOT. This step updates package SYSTEM.

3. Freeze STANDARDPACKAGES. SPEC.

Following these steps will allow you to modify the maximum address space.

.APM.DXF TO NL-STD-1815A

5.2. IMPLEMENTATION-DEPENDENT ATTRIBUTES

No implementtion-dependent attributes are currently supported.

5.3. SPECIFICATION OF THE PACKAGE SYSTEM
The paramneter values specified for the Texas Iisutumenm C40 processor family target in package SYST-EM

(LAM 13.7.1 and Anmex C) are:

package SYSTEM is
type ADDRESS is new INTEGER;
type NAME is (T1320C40) ;
SYSTEM NAME : constant NAME :- T1320C40;
STORAGE UNIT constant :I 32;
MEMORY _IZE constant : 16#FFFFFFFF#;
MAX INT constant : 2 147 483 647;
MIN-INT : constant :- --MAX NT - 1;
MAX-DIGITS : constant :- 9;

MAX MANTISSA : constant :, 31;
FINE DELTA : constant :- 2#1.0#e-31;
TICK : constant :- 0.00006103515625 -- 2**(-14)
subtype PRIORITY is INTEGER rang 10 .. 100;
DEFAULT PRIORITY : constant PRIORITY :- PRIORITY'FIRST;
RUNTIME ERROR : exception;

end SYSTEM;

COMPILATION SYSTEM MANUAL

5.4. RESTRICTIONS ON REPRESENTATION CLAUSES
T'he following sections explain the basic restrictions for representation specifications followed by additional

restrictions applying to specific kinds of clauses.

5.4.1. Basik Restriction
The basic restriction on representation specifications (LRM 13.1) is that they may be given only for type

declared in terms of a type definition, excluding a GENERIC TYPE DEFINITION (LLM 12.1) and a
PRIVATE -TYPEDEFINITION (LRM 7.4). Any representation clause in violation of these rules is not obeyed
by the compiler, an error message is issued.

Further restrictions are explained in the following sections. Any representation clauses violating those
restrictions cause compilation to stop and a diagnostic message to be issued.

5.4.2. Length Claues
Length clauses (LRM 13.2) are. in general, supported. The following sections detail use and restrictions.

5.4.2d1. Size Specifwadens let Types
The rules and restrictions for size specifications applied to types of various classes are described below.
The following princple rules apply:

1. The size is specified in bits and must be given by a static expression.
2. The specified size is taken as a wandat to store object of the type in the given size wherever feasible.

No attempt is made to store values of the type in a smaller size, even if possible. The following rules
apply with regard to ftasibility:

An object that is =o a component of a composite objec is allocated with a size and alignment that
is referable on the target machine (iLe, no attempt is made to create objects of non-referable size on
the stack). If such stack compression is desired, it can be achieved by the user by combining
multiple stack variables in a composite object; for example:

type MY ENUM is (A,B);
for MY ENUM'SIZE use 1;
V,W: MY -ENUM; -- will, occupy two storage

-- units on the stack
-- (if allocated at all)

type REC is record
V,W: MY ENUM;

end record;
pragma PACK(REC);
0: REC; -- will occupy one storage unit

*A formnal parameter of the type is sized according to calling conventions rather than size specifica-
dions of fte type. Appropriate size coinvezuions upon parameter passing take place automatically
and are transparen to the user.

*Adjac~ent bits to an objec that is a coimpoeiti of a compoisite object. but whose size is non-
referable, may be affected by assipments to the object. unless these bits are occupied by other
component of ftm composite object (i-e.. whenever possible, a component of noni-referable size is
mode referable).

In a&H canses the compiler generates coarec code for all operstions on objectst of the type, even if they are
stored with diffieringtopepmemaoncal sizes in diifferent comntextI

Now: A size speificattion caninot be used to forea certain size in value operations of the type; for
emple:

AFPENDrX FTO MIL-STD-1815A

zype MY :NT :.s range 0..S!535;
for MY_ NT'SiZE uase 16; -- 0k
A,B: MY_ NT;

..A-B... -- this operation will generally be
-- executed on 32-bi.t values

3. A size specification for a type specifies the size for obects of this type and of all its subtypes. For
components of composite types. whose subtype would allow a shamte representation of the component
no attempt is made to take advantage of such shorter representations. In contrast, for Wyes without a
length clause. such components may be represented in a lesser number of bits than the number of bits
required to represent all values of the type. For example:

type MYINT is range 0.-2-*15-1;
for MYINT'SIZE use 16; -- (1
subtype SMALL -MY INT is MY tNT rane0 25
type R is record ng . 25

X: SMALLMY-tNT;

end record;

the component R. X will occupy 16 bits. In the absence of the length clause at (1). R. X may be
represented in 32 bits.

Size specifications for access types must coincide with the default size chosen by the compiler for the type.

Size specifications are not supported for floating-point types or task types.

No useful effect can be achieved by using size specificauions for these types.

5.4.2.2. Sim. SpeciJ~adon for Scala' Types
The specified size must accommodate all possible values of the type including the value 0. even if 0 is not in

the range of the values of the type. For numeric types with negative values, the number of bits must account for
the sign bit. No skewing of the representation is attempted. Thus.

type MY_tNT is range 100..101;
requires at least 7 bits. although it has only two values. while

type MYINT is range -101. .-100;

rquires 8 bits to ccount for the sip bit.

A size specification for a real type does not affect tie accuracy of operations on the type. Such influence
should be exerted via fth ACCURACY-DEFINITION of the type (LRM 3.57.73.5.9).

A siz specification for a scdale type may not specify a size larger than the largest operation size supported by
fth target architecture for the respective class of values of the type.

3.4.2j. Siw Sppcifladem for Affy TYPOS
A size specification for an arry type must be large enough to accommodate ail components of the army under

fte densest packing miegy. Any alaigment constraints on fth component type (see Section 5.4.7) must be met.
The size of the comtponent type cannot be infiluenced by a length clause for an arry. Within the limits of

representing ail possible values of the componen subtype (but not necessarily of its type), the representation of
compoentsmay, however, be reduced to the mninimum number of bits, unless the component type carries a size

If there is a size specification, for the componen type. butt not for the amay type. the component size is
ouded up to a referable size, unless pragna PACK is given. This rule applies even to boolean types or other

"tye that require only a single bit for the representattion of all values.

COVIATION SYSTEM M4ANUAL

5.4.2.4. Size Spec adton for Record Types

A size specification for a record type does not influence the default type mapping of a record type. The size
must be at least as large as the number of bits determined by type mapping. Influence over packing of
components can be exerted by means of (partial) record representation clauses or by pragma PACK.

Neither the size of component types. nor the representation of component subtypes can be influenced by a
length clause for a record.

The only implementation-dependent components allocated by Tartan Ada in records contain either dope
information for arrays whose bounds depend on discriminants of the record or relative offsets of components
within a record layout for record components of dynamic size. These implementation-dependent components
cannot be named or sized by the user.

A size specification cannot be applied to a record type with components of dynamically determined size.

Note: Size specifications for records can be used only to widen the representation accomplished by padding at
the beginning or end of the record. Any narrowing of the representation over default type mapping must be
accomplished by representation clauses or pragmp PACK.

5.4.2.5. Spec&adon of Collecton Sizes

The specification of a collection size causes the collection to be allocated with the specified size. It is
expressed in storage units and need not be static; refer to package SYSTEM for the meaning of storage units.

Any atempt to allocate more objects than the collection can hold causes a STORAGEERROR exception to be
raised. Dynamically sized records or arrays may carry bidden adminis tative storage requirements that must be
accounted for as pan of the collection size. Moreover, alignment consu'a=s on the type of the allocated objects
may make it impossible to use all memory locations of the allocated collection. No matter what the requested
object size, the allocator must allocate a minimum of 2 words per object. This lower limit is necessary for
adminicstative overhead in the allocator. For example, a request of 5 words results in an allocation of 5 words; a
request of one (l) word results in an allocation of 2 words.

In the absence of a specification of a collection size. the collection is extended automatically if more objects
am allocated than possible in the collection originally allocated with the compiler-established default size. In this
case, STORAGEERROR is raised only when the available target memory is exhausted. If a collection size of
zero is specified. no access collection is allocated.

5.4.2.6. Spc•ificadon of Task Activaton Size

The specification of a task activation size causes the task activation to be allocated with the specified size. It
is expressed in storage units; refer to package SYSTEM for the meaning of storage units.

Any attempt to exceed the activation size during execution causes a STORAGEERROR exception to be
raised. Unlike collections, there is no extension of task activations.

5.4.2.7. Specificaton of• SMALL

Only powers of 2 an allowed for I SMALL.

The length of the representation may be affected by this specification. If a size specification is also given for
the type, the size specification takes precedence: it must then be possible to accommodate the specification of
' SMALL within the specified size.

5.4.3. Enumeration Representation Clauses
For enumeration representation clauses (LRM 13.3), the following resuictions apply:

* The imernal codes specified for the uerts of the enumeration type may be any integer value between
INTEGER' FIRST and INTEGER' LAST. It is swongly advised that you do not provide a repsntation
clause that merely duplicates the default mapping of enumeration types which assigns comecutive numbers

5-8

APFEN•LXF TO VM-STD-I815A

in ascending order starting with zero (0). Unnecessary runtime cost is incurred by such duplication. It
should be noted that the use of attributes on enumeration types with user-specified encodings is costly at
runtme.

Array types. whose index type is an enumeration type with non-contiguous value encodings, consist of a
contiguous sequence of components. Indexing into the array involves a nmme utanslation of the index
value into the zkrresponding position value of the enumeration type.

5.4.4. Record Representaion Clauses
The alignment clause of record representation clauses (LRM 13.4) is observed.

Static objects may be aligned at powers of 2. The specified alignment becomes the minimum alignment of
the record type, unless the minimum alignment of the record forced by the component allocation and the
minimum alignment requirements of the components is already more stringent than the specified alignment.

The component clauses of record representation clauses are allowed only for components and discriminants
of statically determinable size. Not all components need to be present. Component clauses for components of
variant parts are allowed only if the size of the record type is statically determinable for every variant.

The size specified for each component must be sufficient to allocate all possible values of the component
subtype, but not necessarily the component type. The location specified must be compatible with any alignment
conmaints of the component type. an alignment constraint on a component type may cause an implicit alignment
constraint on the record type itself.

If scom but not all. dist:riminants and components of a record type are described by a component clause, the
disaiminants and components without component clauses are allocated after those with component clauses; no
attempt is made to utilize gaps left by the user-provided allocation.

5.4.5. Address clauses

Address clauses (LRM 13.5) are supported with the following restrictions:

" When applied to an object, an address clause becomes a linker directive to allocate the object at the given
address. For any object not declared immediately within a top-level library package, the address clause is
meaningless I

" Address clanues applied to local packages are not supported by Tartan Ada. Address clauses applied to
library packages are prohibited by the syntax; therefore, an address clause can be applied to a package only
if it is a body stub.

"* Address clauses applied to subprograms and tasks are implemented according to the LRM rules. When
applied to an entry. the specified value identifies an interrupt in a manner customary for the target.
Immediately after a task is created, a runtime call is made for each of its entries having an address clause.
establishing the proper binding between the entry and the interrupt. A specified address must be an Ada
static expression.

Note: Creating an overlay of two objects by means of address clauses is possible with Tartan Ada.
However, such overlays (which are considered erroneous by the Ada LRM 13.5(8)) will not be
recognized by the compiler as an aliasing that prevents certain optmizations. Therefore, problems
may arse if reading and writing of the two overlaid objects are intermingled. For example, if
variables A and B are overlaid by meam of addrs clauses, the Ada code sequence:

A : 5;
B : 7;
if A - 5 then raise SURPRISE; end if;

may well raise the exception SURPRISE. since the compiler believes the value of A to be 5 even after
the assigment to B.

COMP0LA'ON SYSTEM MANUAL

5.4.6. Pragna PACK
Pragnia PACK (LRM 13.1) is supported. For details, refer to the following sections.

5.4.6.1. Pragma PACKfor Arrays
If pragma PACK is applied to an array, the densest possible representation is chosen. For details of packing,

refer to the explanation of size specifications for arrays (Section 5.4.2.3).

If. in addition, a length clause is applied to the array type, the prapna has no effect, since such a length clause
already uniquely determines the array packing method.

If a length clause is applied to the component type. the array is packed densely, observing the component's
length clause. Note that the component length clause may have the effect of preventing the compiler from
packing as densely as would be the default if pragma PACK is applied where there was no length clause given for
the component type.

5.4.62. The Predeflned Type STRING

Package STANDARD applies pragma PACK to the type STRING. However. because type character is deter-
mined to be 32 bits on the C40. this application results in one character per word.

5.4.6J. Pragsa PACK for Records
If pragma PACK is applied to a record, the densest possible representation is chosen that is compatible with

the sizes and alignment containts of the individual component types. Pragma PACK has an effect only if the
sizes'of some component types an specified explicitly by size specifications and are of non-referable nature. In
the absence of pragma PACK, such components generally consume a referable amount of space.

It should be noted that the default type mapping for records maps components of boolean or other types that
require only a single bit to a single bit in the record layout, if there are multiple such components in a record.
Otherwise, it allocates a referable amount of storage to the component.

If pragma PACK is applied to a record for which a record representation clause has been given detailing the
allocation of same but not all components. the pragma PACK affects only the components whose allocation has
not been detailed. Moreover, the strategy of not utilizing gaps between explicitly allocated components still
applies.

5.4.7. Minmbal Alignment for Types
Certain aligmnent properties of values of certain types ane enfrced by the type mapping rules. Any rexrsen-

tation specification that cannot be satisfied within these consminm is not obeyed by the compile and is ap-
propriately diagnosed.

Alignment conaints are caused by properties of the target architec•ure. most notably by the capability to
extract non-aligned component values from composite values in a reasonably efficient mamae. Typically,
resuictions ex~oa that make exutaction of values that aus certain address boundaries very expensive, especially
in contexts involving army indexing. Permitting data layouts that require such complicated extactiom may
impact code qualiy on a broader scale than merely in the local conte of such ea-o.

Inszead of describing the precise algorithm of establishing t minimal alignment of types, we provide the
general rule that is being enforced by the alinment rmes:

* No objec of scatar type (including components or subcomponents of a composit type) may span a
rget-dependent addrsa boundary that would mandate an exu..mon of the object's value to be perfotmed

by two or Mo-n em0ctics.

APPENDIX F TO Nffl.-STD.1815A

5.5. IMPLEMENTATION-GENERATED COMPONENTS IN RECORDS
The only implementacion-dependent componenms allocated by Tartan Ada in records contain dope information

for arrays whose bounds depend on discrirmnaats of the record. These components cannot be named by the user.

5.6. INTERPRETATION OF EXPRESSIONS APPEARING IN ADDRESS CLAUSES

Section 13.5.1 of the LRM describes a syntax for associating interrps with task enties. Tartan Ada
implements the address clause

for toentry use at intID;
by associating the interrupt specified by intmD with the toentry enury of the task containing this address
clause. The interpretation of int ID is both machine and compiler dependent

5.7. RESTRICTIONS ON UNCHECKED CONVERSIONS

Tartan supports UNCHECKEDCONVERSION as documented in Section 13.10 of the LRM. The sizes need
not be the same. nor need they be known at compile time. If the value in the source is wider than that in the
target. the source value will be Uuncated. If narrower, it will be zero-extended. Calls on imtantiations of
UNCHECKED CONVERS ION are made inle automatically.

5.8. IMPLEMENTATION-DEPENDENT ASPECTS OF INPUT-OUTPUT PACKAGES
Tartan Ada supplies the predefined input/output packages DIRECTIO. SEQJENTIAL_1O. TEXT IO. and

LOW LEVEL Io as required by LRM Chapter 14. However, since the C40 chip is used in embedded-applica-
tions-lacking both standard I/O devices and file systems. the functionality of DIRECT_1O, SEQUENTIAL 10.
and TEXT1 is limited.

DIRECT IO and SEQUENTIAL raise USE ERROR if a file open or fle access is atempted. TEXT IO
is supported to CURRENTOUTPUT and from CURRENTINPUT. A routine that takes explicit file names raises
USEERROR.

..

COMPILATION SYSLM•"MANUAL

5.9. OTHER IMPLEMENTATION CHARACTERISTICS

The following information is supplied in addition to that required by Appendix F to M[L-STD-1815A.

5.9.1. Definition of a Main Program

Any Ada library subpropam unit may be designated the main program for purposes of linking (using the Ada
librarian's L INK subcommand) provided that the subprogram has no parameters.

Tasks initiated in imported library unimts follow the same rules for termination as other tasks (described in
LRM 9.4 (6-10)]. Specifically, these tasks am not terminated simply because the main program has terminated
Terminate alternatives in selective wait statements in library tasks are therefore su-ongly recommended.

5.9.2. Implementation of Generic Units
All instandations of generic units. except the predefined generic UNCHECKEDCCNVERSICN and

UNCHECKEDDEALLOCATION subprograms. are implemened by code duplications. No attempt at sharing
code by multiple instaniations is made in this releae of Tartan Ada.

Tartan Ada enforces the rsicmuon that the body of a generic unit must be compiled before the unit can be
instantiated. It does not impose the restricton that the specifiction and body of a generic unit must be provided
as part of the same compilation. A recompilation of the body of a generic unit will cause any units that
instantiated this generic unit to become obsolete.

S.,9.3. Implementaton-Deflned Characteristics in Package STANDARD
The implemenation-depend characistics for C40 in package Standard (Annex C) are:

package STANDARD is

type INTEGER is range -2 147 483 648 .. 2 147 483_647;
type FLOAT is digits 6 mn-ge -i6#0.1000_00#E+33-.. 1640.FFFFFF#E+32;

type LONG FLOAT is digits 9 range -16#0.1000_000_0#E-33
-f6#0.FFFF FFFF 0#E+32 ;

type DURATION is delta 0.0-001 range -86400.0 .. 36400.0;
-- DURATION'SMALL - 2#1.0#E-14 (that is, 6.103516E-ý sec)

ed STANDARD;

5.9.4. Attributes of Type DURATION
The type DURATION is defined with fth following characteristics:

Attribute Value

DURATION' DELTA 0.0001 sec

DURATION' SMALL 6.1035160s

DURATION" FIRST -86400.0 sec

DURATION' LAST 86400.0 sec

Q

5-12

APPENDIX F TO ",-STD-.815A

5.9.5. Values of Integer Attributes
Tartan Ada suppors t•h predefined integer type iNTEGER. The range bounds of the predefined type

"NNTEGER are:

Attribute Value
INTEGER' FIRST -2*'31

INTEGER'LAST 2*31-1

The range bounds for subtyp declared in package TEXT_10 are:

Attribute Value

COUNT' FIRST 0

COUNT' LAST INTEGER' LAST - 1

POSITIVE COUNT' FIRST I

POSITIVECOUNT' LAST INTEGER' LAST - I

FIELD'FIRST 0

FIELD'LAST 240

The range bounds for subtypes dclae in package DIRECT 10 are:

Attribute Value

COUNT' FIRST 0

COUNT' LAST INTEGER' LAST

POSITIVECOUNT'FIRST 1

POSITIVECOUNT' LAST COUNT' LAST

CONMILATION SYSTEM MANUAL

5.9.6. Values of Floating-Point Attributes
Tartan Ada supports the predefined floaing-point types F.OAT and LONGF22AT.

In addition, a set of standard library packages provides support for a non-Ada "double precision" 16-decimal
digit float type. EXTENDEDFLOAT. Please refer to Section 8.2 for demils. This type could not be supported as
a predefined type due to Ada's "4*B" rule (LRM 3.5.7.7) that relamte 'DIGI:S to the range of the machine
exponem Under this rule. the EXTENDEDFLOAT is indistinguishable from the LONGFLOAT type.

Attribute Value for FLOAT

DIGITS 6

MANT. SSA 21

EMAX 84

EPSILON 1600. 1000OOE00E4 (approximately 9.53674E-07) I
SMALL 160.8000_00#E-21 (approximately 2.58494E-26)

LARGE l60O.FF._F8#E+21 (approximately 1.93428E+25)

SAFE EMAX 125

SAFE-SMALL 1600.400000#E-31 (approximately 1.17549E-38)

SAFE-LARGE 1600.1lFFF.F#E+32 (approximately 4.25353E+37)

FIRST -160.1000_00#E+33 (approximatel -3.40282E+38)

LAST 16#O.FFF•M..FE+32 (approximately 3.40282E+38)
MACHINE RADIX 2

MACHINEMANTISSA 24

MACHINEEMAX 128

MACHINEEMIN -125

MACHINE ROUNDS FALSE

MACHINE OVERFLOWS TRUE

4LIQ

APENDL'C FTO MIL-STD- ISA

The Ada attibutes are inasum cient for completely describing floating point numbers, especially with non-
symmetic machine exponent and machine mantissa nges. For example. MACD.UNErM.AX and
M.ACHiNE EMIN ae defined such that both the full manussa range and the negative of any value must be
supported in the floaing formaL This faiLs to document odher. less restictve exponen limits.

Additional (missing) properties ar provided in the table below. The table is informational; ther are no
additional anributes corresponding to these values supplied by Tartan Ada. In the table. POS_MACHINEEMAX.
NEG MACHINE EMAX. POS MACHINE EMIN. NEG MACHINE EMIN are defined as the positive and nega-
tive fating value extrmes for the machin exponent such that te full mantissa range is stl supported (but no
guarantees are made that the negative of any value is still representable). POS MACHINEVERYEMAX,
NEG MACHINE VERYEMAX. POSMACHINEVERYEMIN, NEGMACHINEVERYEMIN are defined as
the positive and negative floating value extemes for the machin exponent such that at least one floating value is
still representable. MOST POSITIVE, LEAST POSITIVE. MOSTNEGATIVE. and LEASTNEGAT:VE are
the absolute exuemes possible in the floating forim

Propety WVaue for FLOAT

POS MACHINE EMAX 128

NEG MACHINEEMAX 128

POS MACHINE EMIN -126

NEG MACHINEEMIN -125

POS MACHINEVERYEMAX 128

NEG MACHINE VERY EMAX 129

POS MACHINE VERY EMIN -126

NEG MACHINE VERY EMIN -126

MOSTPOSITIVE 16OYFFF_FF#E+32 (- 'LAST. approx 3.40282E+38)

LEAST POSITIVE 16#2.0E-32 (approx 5.87747E-39)

MOST NEGATIVE -1600.1000_00#E+33 (z 'FIRST. approx -3.40282E+38)

LEASTNEGATIVE " 1620000_01#E-32 (approx -5.87747E-39)

COMNWLATION SYSTEM MAINUAL

Attribute IValue for ZOý:NG :A

0 IGITS 19

MANTISSA 31

EMAX 124

E PSI -IL0N 16#0.4000_0OO.0000E.7 (approximately 9.3 1322575E- 10)

SMALL 16#0.8=-..0000..0#E.31 (approximately 2.35098870E-38)

LARGE 16#0.:FWFF&FFE..E+3 1 (approximateiy 2.12676479E+37)

SAFE -- EMAX 125

SAFE SMALL 160O.4100...000Oj)#E-31 (approximaicy l.175494351E-38)

SAFE LARGE 16#0. IF FFFFFF_.C0E432 (approximasly 4.25352958'7E+37)

F'-rST -1600. 1000_.0000_0#PE+33 (approximately -3.40282367E+38)

LAST 16#01.FFF-.FFFF_.0#E+32 (approximately 3.40282367E+38)I

MACH INERADIX 2

MACHINEMANTISSA 32

MACHINEEMAX 128

MACHINEEMIN -125

MACHINEROUNDS FALSE

MAC HINEOVERF LOWS ,TRUE

APPENDIX F TO •M--STD-ISUA

The Ada attbutes are insufficient for completely describing floating point numbers, especially with non-
symmetric machin exponent and machine mantissa ranges. For example, :AACH'NE 7-MAX and
MACHINE EMIN ae defined such that both the full mantissa range and the negative of any value must be
supported in dte floaing formal This fails to document other, leas restrictive exponent limits.

Additional (missing) properties are provided in the table below. The table is informational; there are no
additional attributes coesponding to these values supplied by Tartan Ada. In the table, POSMACHINE EMAX,
NEG MACHINEEMAX. POS MACHINE EMIN. NEG MACHINE EMIN are defined as the positive and neg-
tive floating value extremes for the machi exponent such that the full mantissa range is still supported (but no
guarantees are made that the negative of any value is still, rpresentable). POS MACHINE VERY EMAX.
NEG MACHINEVERYEMAX. POSMACHINEVERYEMIN. NEG MACHINE VERYEMIN-are de• ed as
the positive and negaive floating value extremes for the machine exponent such that at least one floating value is
still representable. MOST POSITIVE. LEAST POSITIVE. MOSTNEGATIVE. and LEAST NEGAT:VE are
the absolute extremes possible in the floating fomat.

Property Value for LONGFLOAT

POSMACHINEEMAX 128

NEG MACHINEEMAX 128

POSMACHINE EMIN -126

NEGMACHINEEMIN -125

POS MACHINEVERYEMAX 128

NEGMACHINEVERYEMAX 129

POS MACHINEVERYEMIN -126

NEG MACHINEVERYEMIN -126

MOST POSITIVE 16#O.FFF-FFFF#E+32 (a 'LAST, approx 3.40282367E+38)

LEAST-POSITIVE 16#2.0#E-32 (approx 5.87747175E-39)

MOST NEGATIVE -16#0.1000_0000#E+33 (a ' FIRST, approx -3.40282367E+38)

LEAST-NEGATIVE -16#2.00_00000 1#E-32 (approx -5.87747176E-39)

COMPLATION SYSTEM MANUAL

5.10. SUPPORT FOR PACKAGE MACHINE CODE
Package M.ACHINE _=DE provides the user with an interface through which to request the generation of any

instruction that is available on the C40. The implementation of package MACHINE C=DE is similar to that
described in Section 13.8 of the Ada LIM' with several added feawures. Please refer to Appendix B for the
package MACHINE_CODE specification.

5.10.1. Basic Information
As required by LRM. Section 13.8. a routine which contains machine code insert may not have any other

kind of statement, and may not contain an exception handler. The only allowed declarative item is a use clause.
Comments and pragnas are allowed as usual.

5.102. Instructions

A machine code insert has the form TYPEMARK' RECORD AGGREGATE. where the type must be one of the
records defined in package MACHINE CODE. Package MACHINE CODE defines seven types of records. Each
has an opcode and zero to six operands. These records are adequate for the expression of all instructions
provided by the C40.

5.10.3. Operands and Address Modes

An operand consis of a record aggregate which holds all the information to specify it to the compiler. All
operands have an address mode and one or more other pieces of information. The operands correspond exactly to
the operands of the intrucon being generated.

Each operand in a machine code insert must have an AddressModeName. The address modes provided in
package MACH INE_CODE provide access to all address modes supported by the C40.

In addition, package MACHINECODE supplies the address modes SYMBOLICADDRESS and
SYMBOLIC VALUE. which allow the user to refer to Ada objects by specfying OBJECT'ADDRESS as the
value for the operand. Any Ada object which has the ' ADDRESS attribute may be used in a symbolic operand.
SYMBOLICADDRESS should be used when the operand is a trie address (e.g.. a branch target).
SYMBOLICVALUE should be used when the operand is actually a value (i.e.. one of the source operands of an
ADD I instruction).

When an Ada object is used as a source operand in an instruction (that is. one from which a value is read), the
compiler will generate code which fetches the value of the Ada object. When an Ada object is used as the
destinaton operand of an instruction, the compiler will generate code which uses the address of the Ada object as
the destination of the instruction.

5.10.4. Examples

The implementation of package MACHINECODE makes it possible to specify both simple machine code
ieim such a

Two.Opnds' (LDI, (Imm, 5), (Reg, RO))

and more complex inserts such as
Three_Opnds' (ADD13,

(Imm, 10),
(SymbolicValue, ArrayVar(X, Y, 27)'ADDRESS),
(Symbolic Address, Parameter l'ADDRESS))

in the first exmple t compiler will emit ft inmr•c•on LD I 5, RO. In the second exampIe the compiler
may fim emit an inaruction to load the iindiam value 10 im. a rester (depending on whedi the compiler
decides to make type I or tpe2 three operand instruction). next emit whatever uuuctions am needed to form
the addeofARRAYVAR(X, Y, 27) madh enemitlheADDI3 minmmcda. If PARAMETER 1 i not fouind
in a mom. the compiler will put the reult of the addition in a temporary re-i,, and then smre it to
PARAMETER I'ADDRESS. Note that the detinmion operand of the ADDI3 instruction is given as a

3-18

APPENDLX F TO .dIL-STD- 18 15A

SYMBOL:C ADDRESS. This holds true for all destination operands that are not also read as source operands by
the instruction. SYMBOLIC VALUE should be used if the operand is both a source and a destination as in the
second operand of the ADD I instruction. The various error checks specified in the LRM will be performed on all
compiler-generated code unless they are suppressed by the user (either through pragma SUPPRESS. or through
command qualifiers).

5.10.5. Incorrect Operands

Under some circumstances, the compiler attempts to correct incorrect operands. Three modes of operation
are supplied for package MACHINE CODE to determine whether corrections are atempted and how much
information about the necessary corrections is provided to the user. These modes of operation are
/FIXUP-NONE. /FIXUP-WARN. and /FIXUP-QUIET./FIXUP-QUIET is the defaulL

In / F IXUP-NONE mode. the specification of incorrect operands for an inssruction is considered to be a fatal
error. In this mode, the compiler will not generate any exta intructions to help you to make a machine code
insertion. Note that it is still legal to use ' ADDRESS constructs as long as the object which is used meets the
requirements of the instruction.

In /FIXUP-QUIET mode, the compiler will do its best to correct the machine code if incorrect operands are
specified. For example, although it is illegal to use a memory address as the destination of an ADDI insruction.
the compiler will accept it and try to generate correct code. In this case. the compiler will load into a register the
value found at the memory address indicated, use this register in the ADD I instruction, and then store from that
register back to the desired memory location.

TwoOpnds' (ADDI, (Imm, 10), (ARI, AR1))

will produce a code sequence resembling

LDI -AR1, RO
ADDI 10, RO
STI RO, *AR1

The ext example illustrtes the correction required when the displacement is out of range for the first
operand of an ADD 13 instruction. The displacement is firt loaded into one of the index registers.

ThreeOpnds' (ADDI3, (IPDA, AR3, 32), (Reg, RO), (Reg, Ri))

will produce a code sequence resembling

LDI 32, IRO
ADDI3 AR3(IRO), RO, Ri

In / IXUP-WARN mode, the compiler will also do its best to correct any boromc operands fbr an intsmc-
don. However. a warning message is issued satng that the machine code nsert required additional machine
instctons to make its operands legal.

5J0.6. Assumptons Made in Correcting Operand.
When compiling in /FIXUP-QUIET or /FIXUP-WARN modes, the compiler a to emit additional

code to move "the right bits" from an incorrct operand to a register or place in memory which is a legal
operand for the requested instruction. The compiler makes cermain basic assumptions when performing these
corcon. This section explains the aintiptions made by the compiler and their implications for the generated
code. Not that if you wat a carrectio which is differe firom that performed by the compile, you must make
explicit machine cof insertodn to perform it.

For source -prw
* SYMBOLIC ADDRESS mems th the address specified by the ' ADDRESS expreasion is used a the

sonrs bis. When the Ads object specified by the ' ADDRESS iaruction is bIund to a reg .w it will
cea a compile-dw anao min becamue it is not pouibe w "take the addu" of a register.

COMPILATION SYSTEM MANUAL

"* SYMBOL:C V-ALUE means that the value found at the address specified by the ' _..SS expression will
be used as the source bits. An Ada object which is bound to a register is correct here, because the contents
of a register can be expressed on the C40.

"* PCREL indicates that the address of the label will be used as the source bits.

" Any other non-register means that the value found at the address specified by the operand will be used as
the source bits.

For destination operands:

" SYMBOLIC_ADDRESS means that the desired destination for the operation is the address specified by the
'ADDRESS expression. An Ada object which is bound to a register is correct here: a register is a legal
destination on the C40.

" SYMBOLIC_VALLUE means that the desired destination for the operations is found by fetching 32 btis from
the address specified by the ' ADDRESS expression, and storing the result to the address represented by the
fetched bits. This is equivalent to applying one extra indirection to the address used in the
SYMBOLICADDRESS case.

"* All other operands are interpreted as directly specifying the destination for the operation.

5.10.7. Register Usage
Since the compiler may need to allocate registers as temporary storage in machine code routines, there are

some restictions placed on your register usage. The compiler will automatically fr all registers which are
volatile across a call for your use (RO..R3 bits 32-39 of R4..RS, bits 0-7 of R6..R7. bits 32-39 of R8. R9 .. RI 1.
ARO..AR2 IRO. IRI. BK. ST. bIB. =E, 13P. RS. RC RE).

If you reference any other register, the compiler will reserve it for your use until the end of the machine code
rouine. The compiler will nor save the register automatically if this routine is iine expanded. This means that
the first reference to a register which is not volatile a2oss calls should be an insruction which saves its value in a
safe place. The value of the register should be restored at the end of the machine code routine. This rule will
help ensure correct operation of your machi code insert even if it is inline expanded in another routine.
However. the compiler will save the register automatically in the prolog code for the routine and restore it in the
epilog code for the routine if the routine is no; inline expanded.

As a result of fiveing all volatile registers for the user, any parameters which were passed in registers will be
moved to either a non-volatile register or to memory. References to PARAMETER' ADDRESS in a machine code
inmsert will then produce code that uses this register or memory locaion. This meams that thr is a possibility of
invalidating the value of so=e 'ADDRESS expression if the non-volatile register to which it is bound is used as a
destination in sme later macie code imsert. In this cue, any subsequent references to the 'ADDRESS
expression will cause the compiler to issue a waring message.

The compiler may need several registers to generate code for operand corrections in machine code inser. If
you use all the regimru correcu:ios will not be possible. In general. when mor registers ar available to the
compiler. it is able to genate better code.

5.10.. Data Directives
Two speciai insructin are included in package MACHINE-CODE to allow the user to place data into the

code seam. These two insmuctiwis an DATA32 and DATA64. Each of these instuctions can have I to 6
operads.

DATA32 is used to plm 32-bit data into the code sutm. The value of an integer or 32-bit float. and the
address of a label are the legal operands (Le., operands whose address mode is either IMM. FLOATIM. or
SYMBOLIC_ADDRESS ofan¢ labe W).

.AkPPENDIX FTO .**L-STD-1815A

<< 11 >>

ThreeOonds' (DATA32, (SymbolicAddress, L2'Address,,
(SymbolicAddress, L3'Acaress),
(Symbolic-Address, L4'Address));

<< L2 >>
<< L3 >>
<< L4 >>

'will produce a code sequence like

Li: .word L2
.word L3
.word L4

DATA6 4 is used to place a 64-bit piece of data into the code stream. The only legal operand is a floating
literal (i.e., the operand whose address mode is FLOATIMM).

5.10.9. Inline Expansion
Routines which contain machine code inserts may be inline expanded into the bodie. of other routines. This

may happen under user control though the use of pragma INLINE. or with opimizations for sumdard and
fimteopamization levels when the compiler selects that optimization as an appropriate action for the given
situation. The compiler will treat the machine code insert as if it were a call. Volatile registers will be saved and
restored around it and simila optmizing steps will be takn

5.10.10. Move Macro Instructions
The C40 instruction set contains no single all-purpose move instuction, but instead supplies the set

(LDI, LDF, STI, STF }. Each of these inasucon defines a very specific kind of move with res•c•tson
data types and sourceddestinaton locations (memory vs. regisw). Unfortnately. when constrcting data moves
using package MACHINECODE. it is impossible to predict if an Ada object will be in memory or in a register,
especially in the presence of Wining. For this reason, three "macro" instractions are supplied:

Name Meaning

MOVI Move a 32-bit intger from the first
operand to the secoad emitting some
combination of LDI and STl's to do so.

MOVF32 Move a 32-bit float from the first
operand to the second emitting some
combination of LDF and STF's to do so."

MOVF40 Move a 40-bit float from the first
operand to the second, emitng some
combination of LDF/LDI and STF/STI's to
doso.

5.1011. Using LWJ instructions
The code generated for a routine wiuit in Ada has two enry points. One of the enty points is used by

CALL in ctiom ThMe orr entry point is used by LAJ instuton•. The example below shows the two code
uences that the compiler can generate fbr a given routine:

COWILATION SYSTEM MANUAL

_mvfunc : POP RI" ; CALL en-.-,
mvfucSL~: ... ; Aj ent-ry

BU R.l

_myfuncSLAJ: PUSH Rll ; LAJ entry
_myfunc: ; CALL entry

ýiT'S'o

Two groups of LAJ insurucuions arm provided in package MACHINECODE. The special group of LAj
instructions that has the Ada suffix should be used to call routines that am1 written in Ada. Using one of these
special LAj instrucons tells the compiler that the target of this call should be the LAJ entry of the routine and
not the CALL entry of the routine. If an LAJ without the Aca suffix is used. the compiler will use the CALL
entry of the routine as the target. The non Ada version should be used to call routnes that are not written in
Ada (i.e.. routines that are written in assembly. C, etc.).

Calling the Ada routine

One_Oonds' (LAJAda, (Symbolic-Address, MyAda Function'Address);
will produce

LAJ _mvadafuncSLAJ
where the compiler uses the LAJ entry of MyArda_Function as the target

Calling the Assembly routine

OneOpnds' (LAJ, (Symbolic-Address, My_Assembly Function'Address);
will produce

LAJ _myassemblyfunc
and not

L.kJ _myassemblyfunc$LAJ
because the CALL entry of MYASSEMBLYFUNCTION is used for the non _Ada LAJs.

If the source operand of a LAJCONDADA istructon is a regiser then the compiler cannot generate the LAJ
enty for the routine. An error message is issued in this case. An Ada routine can be called by LAJCOND
insructions whose source operand is a register if the non A'da version is used. Tle following example shows
how Ada routines can be called by LAJCOND in ucions that have a register as the source operand.

5-22

-APFNDL'(FTO %M..STD- L815A

Two O^cris' (U,(sy.boii: Accress, -4yvkda---uncz :'-caress),,
(R.eg, ARO));

One Oi~nds' (LzLJU, (Reg, AROfl; -- use the non _Ada version
Two-Opnds' (LDIU, (rnrm, 1) , (Reg, ROn;)
TwoOpnds'(LDIU, (Imni, 1.), (Reg, R));
OneOpnds' (PUSH, (Reg, R11)); -- return address .4s pushed on stack

will produce

LDIU @DEF1, ARO
LAJU ARO
LDIU 1, RO
LDIU 1, Ri
PUSH Rll

DEFl: wvord mTyadafunc

In the above example. the target of the LAJU will be the CALL eonty for MYADAFUNCT:ON and not the LA'J
entry. Since the target of the LAJU is the CALL eonty, the return address- must be pushe onto the runtnie stack
tosirmulate the semantics of a CALL instuciicon. This is done by making the PUSH Ri 1 fill the last delay slot of
the LAJU.

5.1012. Unsafe Assumptions
There are a variety of assumptions which should not be made when writing machine code inserts. Violation

of thewe assumptions may resuilt in the generation of code which does not assemble or which may not function
correctly.

" The compiler will not generate call site code for you if you emit a CALL or LAj instruction. You must
save and restore any volatile registers which currently have values in them. etc. If the routine you call has
out parameters. a large function return result, or an unconstrained result, it is your responsibility to emit
the necessary instructions to deal with these coustructs as the compiler expects. In other words, when you
emit a CALL or LAJ. you must follow the linkage conventions of the routine you are calling. For further
details on call site code, see Sections 6.4. 6.5 and 6.6.

"* Do not assume that the I'ADDRES on SYMBOLICADDRESS or SYMBOLIC VALUE operands means
that you are getting an ADDRESS to operate on. The Address- or Value-ness of-an operand is determined
by your choice of SYMBOLIC_-ADDRESS or SYMBOLICVALUE. This means that to add the contentsr of
X to ARO. you should write

TwoOpnds' (ADDI, (Symbolic Value, X'ADDRESS),
(Req, ARO))

but to add the address of X to ARO, you should write
TwoOpnds' (ADDI, (Symboli cAddres s, X'ADDRESS),

(Reg, AMO));

5.10.13. Limitations
The current implementation of the compiler is unable to fully support auitomatic correction of certain kinds of

oead. In particular. the compiler assumes that the size of a dama object is the same as the number of bits
which is operated ont by the instrction chosen in the machine code insert. This means that the insert

Two Oprids' (ADDF, (Symbolic-Value, LongFloat-Variable' ADDRESS),
(Reg, RO))

will not ge=rat correct code when LONG FLOAT VARIABLE is bound to mmory. The compilerwillassume
that LONG FLOAT VARIABLE is 32 bitswhen in fact it is stored in 64 bits of memory. If. on fth other hand,

-- .43-2

COMPILATION SYSTEM MAINUAL

'ONG_-_OA: "AR:AB" was bound to an extended-precision register. the insertion will function properly, as
no correction is needed.

Note that the use of X'ADDRESS in a machine code insert does not guarame that X will be bound to
memory. This is a result of the use of 'ADDRESS to provide a "peless" method for naming Ada objecrs in
machine code inserts. For example. it is legal to say (SYMBOLIC_'ALUE, X'ADDRESS) in an inser even
when X is found in a register.

5.10.14. Example

with machine code; use machinecode;
procedure mach example is

type arytype is array(i..4) of integer;

a: arytype :- (1,2,3,4);
b: integer;

procedure case statement(a: in integer; b: in out integer) is
begin
-- implements case a is
-- when 1 -> b : 0;
-- when 2 -> b : b * 1;
-- when 3 ->b :b b;
-- when others -> null
-- end case;

ThreeOpnds' (SUB13, (Imm, 1), (Symbolic Value, a'Address), (Reg, IRO));
Two Opnds' (LDI, (Symbolic Address, L1'Address), (Reg, ArO));
Two.Opnds' (LDI, (IPrIA, Ar0, IRO), (Reg, Arl));
One Opnds" (case_jump, (Reg, Arl));
<< UL >>
Three.Opnds' (DATA32, (Symbolic Address, L2'Address),

(Symbolic Address, L3'Address),
(Symbolic Address, L4'AddressD);

<< L2 >>
TwoOpnds' (LDI, (Imm, 0), (SymbolicAddress, b'Address));
One Opnds' (BU, (PcRel, LS'Address));
<< L3 >>
TwoOpnds' (ADDI, (Imm, 1.), (SymbolicValue, b'Address)f;
One Opnds' (BU, (PcRel, L5'Address));
<< L4 >>
TwoOpnds' (MPYI, (Symbolic Value, b'Address), (Symbolic-Value, b'Address));
<< L5 >>
Zero Opnds' (NOP); -- since label can't be last statement in procedure

end case statement;

pragma INLINE(case_statement);

begin
if a(l) >- 0 then

case statement(a(3), b); -- will be inline expanded
end if;

end oachexample;

.APPEVDDC F TO .MDL-STh..i815A

Assembly code output:
.global mach example

.global AO0mchxmplOOO9

.global A00mcnxmPlOO09SLAJ

.text

A00mchxipl0009: POP Ri].
AO0mchxmplOO09SLAW': ADDI 1,SP

PUSH AR3
LOA SP,AR3
PUSH AR3
ADDI 4,S?
PUSH R5
PUSH RBs
LDA @DEFl,ARO
STI ARO,*+AR3(l)

LOA @DEF2,AR0 line 7
ADD13 2,AR3,ARl
LOWU ARO0* (1) ,R1
RPTS 2
LDI *AROe+(l),Rl
11 STI Rl.,ARl++(l)
STI RI, 'ARl
CMP13 0,.+AR3(2) ,line 43
BLT L22
LDIU *+AR3C4),RO ;line 44
LDOW R5,R8
LDIU RO,R5
SUB13 l,R5,IRO ,li.ne 18
LDI 8,DEF3,ARO ,line 19
Lot .+ARO(IRO),ARl line 20
SU API. line 21

L23:
L14:

.word L.15
;line 23

.word 1.16

.word L.17

1.15: WDI 0,R8 ;line 27
BU 1.18 ;line 28

L.16: ADDI lR8 ;line 30
BU 1.18 ;line 31

L17: ?.fYI R8,R8 ;line 33
1.18: NOP ;line 35

LOWU R8,R5 ;line 44
L.22:

;line 40
LOWU *+AR3(6),R5
LDIU *+AR3(7),RS
BUD R11
LWA AR3,SP
POP AR3
SUBZ 1,SP

Total words of code in the above routine -41

.text ;assiqned to -DEFALT- data page
.sect lo:DETALT*

DEF3: wvord L14
DEF].: .word L22

COMPMATION SYSTEM MANUAL

. text

casestatementSOO: ?CP R11
casestatementSOOSLAJ:

BU R11

Total words of code in :he above routine - 2

.text ;assigned to "DEFALT" data page

.sect "o:DEFALT*

.text ;assigned to "DEFALT" data page

.sect "o:DEFALT"
DEFALT: .word 0

.text

.text ;assigned to *DEFALT" data page

.sect Oo:DEFALT"
DEF2: .word DEF5
DEF5: .word 1

.word 2

.word 3

.word 4

Total words of code - 43

Total words of data -

.end

PENDIX F TO 'VtfLSTD-181SA

5.11. INLINE GUIDELINVES
The following discussion on mirding is based an the next two examples. From these sample programs.

general rules. procedures, and canions are illustrated&

Consider a package with a subprogra that is to be inlined.
package IN_-PACK is

procedure I -WILL BE-INLINED;
pragma INLINE (IWILLBEINLIt4ED);

end IN PACK;

Consider a procedure that makes a call to an inlined subprogram in the package.
with IN PACK;
procedure USES_:NL:NED SUBP is
begin

I -WILLBEINLINED;
end;

After the package specification for INPACK has been compiled, it is possible to compile the unit
USES INLINEDStJBP that -akea Callot"subprogram IWILLBEINLINED. However. bemause the
body of the subprogram is =o yet available. the generated code will not have an inlined version of the sub-
program. The generated code will use an out of line call for IWILLBEINLINED. The compiler will issue
warring message #2429 that the call was not inlined when USESINLINEDSUEP was compiled.

If INPACK is used aeross libraries, it can be exported as part of a specification library after having compiled
the package specification. Note that if only the specification is exported, there will be no inlined calls to
IN-PACK in all units within libraries that import IN -PACK . If only the specification is exported. all calls that
appear in other libraries will be out of line calls. The compiler will issue warning message f66O1 toindicate the
call was not in~ed.

There is no warning at link-time thaz subprograms have not been inlined.

If the body for package IN PACK has been compiled before the call to I WILL BE INLINED is compiled.
the compiler will inline the subprogram In the example above. if the bod~y of I-N P-ACK has been compiled
before USES INLINED SUBP. the callwiullbe inined whenUSESINLINED-SUBP iscompiled.

Having an inlined call to a subprogram makes a unit dependent on the unit that contains the body of the
subprogram. In the example. owes USES INLIMIED-SUBP has been compiled with an dinned call to
I WILL BE INLINED, the unit USESIMINED SUBP will have a dependency on the pckage body
INPACK. Thus if the body for packapge ody IN PICK is recomipiled, USESINLINEDSUEP will bcm
obso'lete, and mous be recompiled beofor-e it can be lined.

It is possible to export the body for a library unit If the body for package IN-PACK is added to the
spcfication library uinag the Ada librarian subcommand EXPORT LIBRARY. other libraries that import pack-

age IN-PACK will be able to comipile inlined calls aeross library unit.

At optimization levels lower than the default, the compiler will not inlin calls, even when prageza INLINE
has been used and the body of the subprogram is in the library prior to the unit that makes the call. Lower
optmuoiatio levels avoid any changes in flow of the code that causes movasent of code sequences. ns happens in
a praSna INLINE. If the comtpiler is runnting at a low optimization level, the user will =o be warned that
infining is Dot happening.

See Section 7.12 for a method to control infining.

____ ___ ____ ___5-27

